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All cubic polynomials are point symmetric
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Traditional textbooks usually discuss the point symmetries of functions only in relation to

the origin. For instance, a graph is considered point symmetrical in relation to the origin

O when each point P of a graph as shown in Figure 1, has a corresponding point Q (also

on the graph) under a reflection through O so that PO = OQ. Or equivalently in the plane,

each point P of the graph can be mapped onto a corresponding point Q (also on the

graph) by means of a half-turn (a rotation through 180 degrees) around O.1 Using the

transformation formula for a half turn, it therefore follows that a graph is point symmetric

in relation to the origin if y = f(x) ⇔  y = -f(-x); in other words if it remains invariant

under a half-turn around the origin.
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Given the recommended treatment of transformation geometry in the current proposals

for the new FET curriculum in South Africa, an investigation of the point symmetries of

graphs can be worthwhile. In our present school syllabi, apart from the hyperbola above,

other examples of functions with point symmetries at the origin are: y = mx; y = sin x; y =

tan x; y = x2; y = x3 + x.

But what of a cubic function with a point of symmetry not at the origin? For example, if

one translated y = x3 by one unit upwards it becomes y = x3 + 1, which is clearly point

symmetric around (0; 1). Similarly if one considered the translation of y = x3 by one unit

to the left and two units up, it becomes y = (x - 1)3 + 2. This graph is clearly point

symmetrical around (1; 2), since we can simply translate it back to the origin to obtain y =

x3, which is point symmetric.

Now consider the following cubic polynomial, namely y = x3 – 4x2 - 3x + 18 = (x + 2)(x -

3)2, the graph of which is shown in Figure 2. Intuitively one may visualise a point of

symmetry approximately between x = 1 and x = 2. But how could one find this point of

symmetry exactly if it existed, and prove that it was one?
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Figure 2

y = x3-4x2 -3x + 18
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Let us firstly look at the gradient of the function. If we move from left to right on the

curve, we can see that the gradient starts from a large positive value, decreases to zero,

becomes negative and reaches a maximum negative value before starting to increase

again to become zero and large positive again. By roughly drawing the derivative 
dy

dx
 =

3x2 - 8x - 3 on the same axis, it seems obvious that the point of symmetry must be on the

axis of symmetry of the derivative, i.e. at the point of inflection of the cubic. The

substitution of this value of the derivative, namely, x = 
4

3
 into the original function gives

us the hypothesised point of symmetry, namely, (
4

3
,

250

27
). To prove that this is indeed a

point of symmetry we now only need to translate the function to the origin and to test for

point symmetry around the origin. For example, the transformed equation using the

standard formula for a translation is:

y = ( x + 
4

3
 + 2)(x + 

4

3
 – 3)2 – 

250

27

Which simplifies to:

  y = x3 – 
25

3
x

However, this equation is clearly equivalent to

y = - (( -x )3 - 
25

3
(-x ))

and therefore completes the proof that the point (
4

3
,

250

27
) is a point of symmetry of the

original function.

To make sense of this proof, some learners may perhaps have to be reminded that a

translation is an isometric transformation, which means that it preserves congruency, and

that the graph of the transformed function is therefore geometrically congruent to the

original graph, and all symmetrical properties are therefore preserved.

It is now left to the reader to consider the function y = x3 – x2 and show that it has a point

of symmetry at its inflection point (
1

3
; 

−2

27
). After learners have investigated a few of
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more cubic functions, it is likely that some may conjecture that all cubic polynomials are

point symmetric. With some guidance, learners ought to be able to come up with a

general proof more or less as follows.

Proof

Consider a general cubic polynomial y  = ax3 + bx2 + cx + d

Thus, 
dy

dx
 = 3ax2 + 2bx + c

The x co-ordinate of the inflection point lies on the axis of symmetry the derivative and is

therefore given by xsim =
−b

3a
. Through substitution we can also easily determine the

corresponding y – value, for example:

ysim = − b3

27a2
+ b3

9a2
− bc

3a
+ d

=
2b3

27a2
−

bc

3a
+ d

Consider now the translation of the function y = f(x + xsim) – ysim  so that the inflection

point coincides with the origin:

y = a x −
b

3a
 
 

 
 

3

+ b x −
b

3a
 
 

 
 

2

+ c x −
b

3a
 
 

 
 + d − ysim

After simplification this gives :

y = ax3 + c −
b2

3a

 
 
  

 
x … (1)

which is clearly point symmetric around (0; 0), since

y = − a(−x)3 + c −
b2

3a

 
 
  

 
(−x)

 

  
 

  
remains equivalent to the transformed equation (1). This then completes the proof of the

conjecture.

In my view, an exploration of the point symmetry of cubic polynomials using graphing

software such as Sketchpad provides a very nice setting for an active investigation by

secondary school learners. A zipped Sketchpad sketch that might be useful can be

downloaded directly from http://mzone.mweb.co.za/residents/profmd/cubic.zip
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http://mzone.mweb.co.za/residents/profmd/cubic.zip


Published in Learning & Teaching Mathematics, No. 1, April 2004, pp. 12-15. LTM is a publication of
AMESA at     http://www.amesa.org     All rights reserved.

Such an investigation could provide learners with the opportunity to formulate a

conjecture on their own and create a need for them to attempt to prove it themselves.

Furthermore, besides bringing some nice geometric ideas to algebra, it also shows a

somewhat different application of differentiation, and that not only the roots, but the

turning points of the derivative, may give us useful information.

As a possible project for a mathematical investigation, more ambitious learners at the

Additional Mathematics level may also be encouraged to investigate the general

relationship between symmetric functions and their derivatives (e.g. see De Villiers,

1991). Or alternatively perhaps to derive formulae for the axes and points of symmetry of

the general conics px2 + 2qxy+ ry2 + 2sx+ 2ty + u = 0 (e.g. see De Villiers, 1993).

Another interesting property of cubic polynomials is that of "affine equivalence" and a

companion article about this can be downloaded directly from:

http://mysite.mweb.co.za/residents/profmd/cubeaffine.pdf

Figure 3
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Note

1. Though the different concepts of point symmetry and half-turn symmetry are

mathematically equivalent in the plane, it is very important to note that this is not

necessarily the case in space. For example, some three dimensional solids (like some

crystals) have point symmetry, but not half-turn symmetry. Perhaps the simplest example

is found on the surface of a sphere. Visualise a triangle on the surface of a sphere and its

antipode, with lines joining the corresponding vertices (see Figure 3). Clearly the triangle

and its antipode are point symmetric with respect to the centre of the sphere, but a half-

turn in the plane through B and C and their antipodes will map B to B' and C to C', but

not A to A'.
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(A copy of this article can be downloaded directly from

http://mysite.mweb.co.za/residents/profmd/affine.pdf)
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