A ESCALA DE PROFICIÊNCIA foi desenvolvida com o objetivo de traduzir medidas em diagnósticos qualitativos do desempenho escolar. Ela orienta, por exemplo, o trabalho do professor com relação aos conhecimentos que seus alunos desenvolveram, apresentando os resultados em uma espécie de régua onde os valores obtidos são ordenados e categorizados em intervalos ou faixas que indicam o grau de desenvolvimento dos conhecimentos para os alunos que alcançaram determinado nível de desempenho.
Em geral, para as avaliações em larga escala da Educação Básica realizadas no Brasil, os resultados dos alunos em Matemática são colocados em uma mesma Escala de Proficiência definida pelo Sistema Nacional de Avaliação da Educação Básica (Saeb). Por permitirem ordenar os resultados de desempenho, as Escalas são importantes ferramentas para a interpretação dos resultados da avaliação.
A partir da interpretação dos intervalos da Escala, os professores, em parceria com a equipe pedagógica, podem diagnosticar os conhecimentos já desenvolvidos pelos estudantes, bem como aqueles que ainda precisam ser trabalhadas em sala de aula, em cada etapa de escolaridade avaliada. Com isso, os educadores podem atuar com maior precisão na detecção das dificuldades dos alunos, possibilitando o planejamento e a execução de novas ações para o processo de ensino-aprendizagem.
Para ver a escala em um tamanho maior, clique na tabela (Imagem).
Na primeira coluna da Escala são apresentados os grandes Domínios do conhecimento em Matemática para toda a Educação Básica. Esses Domínios são agrupamentos de conteúdos que, por sua vez, agregam os conhecimentos presentes na Matriz de Referência. Nas colunas seguintes são apresentados, respectivamente, os conhecimentos presentes na Escala de Proficiência e os descritores da Matriz de Referência a eles relacionados.
Os conhecimentos estão dispostos nas várias linhas da Escala. Para cada um deles há diferentes graus de complexidade representados por uma gradação de cores, que vai do amarelo-claro ao vermelho. Assim, a cor amarelo-claro indica o primeiro nível de complexidade do conhecimento, passando pelo amarelo-escuro, laranja-claro, laranja-escuro e chegando ao nível mais complexo, representado pela cor vermelha.
Na primeira linha da Escala de Proficiência, podem ser observados, numa escala numérica, intervalos divididos em faixas de 25 pontos, que estão representados de zero a 500. Cada intervalo corresponde a um nível e um conjunto de níveis forma um PADRÃO DE DESEMPENHO. Esses Padrões são definidos pela Secretaria de Estado da Educação e representados em verde. Eles trazem, de forma sucinta, um quadro geral das tarefas que os alunos são capazes de fazer, a partir do conjunto de conhecimentos que desenvolveram.
Para compreender as informações presentes na Escala de Proficiência, pode-se interpretá-la de três maneiras:
Perceber, a partir de um determinado Domínio, o grau de complexidade dos conhecimentos a ele associados, através da gradação de cores ao longo da Escala. Desse modo, é possível analisar como os alunos desenvolvem os conhecimentos e realizar uma interpretação que contribua para o planejamento do professor, bem como para as intervenções pedagógicas em sala de aula.
Ler a Escala por meio dos Padrões de Desempenho, que apresentam um panorama do desenvolvimento dos alunos em um determinado intervalo. Dessa forma, é possível relacionar os conhecimentos desenvolvidos com o percentual de alunos situado em cada Padrão.
Interpretar a Escala de Proficiência a partir da abrangência da proficiência de cada instância avaliada: estado, NRE, município e escola. Dessa forma, é possível verificar o intervalo em que a escola se encontra em relação às demais instâncias.
Ao relacionar os resultados a cada um dos Domínios da Escala de Proficiência e aos respectivos intervalos de gradação de complexidade de cada conhecimento avaliado, é possível observar o nível de desenvolvimento aferido pelo teste e o desempenho esperado dos alunos nas etapas de escolaridade em que se encontram.
Esta seção apresenta o detalhamento dos níveis de complexidade dos conhecimentos nos diferentes intervalos da Escala de Proficiência. Essa descrição focaliza o desenvolvimento cognitivo do aluno ao longo do processo de escolarização e o agrupamento dos conteúdos básicos para o aprendizado da Matemática para toda a Educação Básica.
Para compreender a leitura da Escala de Proficiência, clique em cada uma das imagens abaixo, de acordo com o domínio que queira avaliar.
Um dos objetivos do ensino de Geometrias em Matemática é propiciar ao aluno o desenvolvimento da competência de localizar objetos em representações planas do espaço. Esta competência é desenvolvida desde os anos iniciais do Ensino fundamental por meio de tarefas que exigem dos alunos, por exemplo, desenhar, no papel, o trajeto casa-escola, identificando pontos de referências. Para o desenvolvimento desta competência, nos anos iniciais do Ensino fundamental, são utilizados vários recursos, como a localização de ruas, pontos turísticos, casas, dentre outros, em mapas e croquis. Além disso, o uso do papel quadriculado pode auxiliar o aluno a localizar objetos utilizando as unidades de medidas (cm, mm), em conexão com o domínio de Grandezas e medidas. Nos anos finais do Ensino Fundamental, o papel quadriculado é um importante recurso para que os alunos localizem pontos utilizando coordenadas. No Ensino Médio os alunos trabalham as geometrias plana, espacial e analítica. Utilizam o sistema de coordenadas cartesianas para localizar pontos, retas, circunferências entre outros objetos matemáticos.
Os alunos cuja proficiência se encontra na faixa cinza, de 0 a 150 pontos, ainda não desenvolveram as habilidades relacionadas a esta competência.
Alunos cuja proficiência se encontra no intervalo de 150 a 200 pontos na Escala, marcado pelo amarelo-claro, estão no início do desenvolvimento desta competência. Esses alunos são os que descrevem caminhos desenhados em mapas, identificam objeto localizado dentro/fora, na frente/atrás ou em cima/embaixo.
Alunos cuja proficiência se encontra no intervalo amarelo-escuro, 200 a 250 pontos na Escala, realizam atividades que envolvem referenciais diferentes da própria posição, como, por exemplo, localizar qual o objeto está situado entre outros dois. Também localizam e identificam a movimentação de objetos e pessoas em mapas e croquis.
O laranja-claro, 250 a 300 pontos na Escala, indica um novo grau de complexidade desta competência. Neste intervalo, os alunos associam uma trajetória representada em um mapa à sua descrição textual. Por exemplo: dada uma trajetória entre duas localidades, no mapa, o aluno verifica qual a descrição textual que representa esse deslocamento e vice-versa.
No intervalo de 300 a 375 pontos, cor laranja-escuro, os alunos já conseguem realizar atividade de localização utilizando sistema de coordenadas em um plano cartesiano. Por exemplo: dado um objeto no plano cartesiano, o aluno identifica o seu par ordenado e vice-versa.
No intervalo de 375 a 500 pontos, representado pela cor vermelha, os alunos localizam figuras geométricas por meio das coordenadas cartesianas de seus vértices, utilizando a nomenclatura abscissa e ordenada.
Nesta competência, a denominação de “figuras geométricas” será utilizada de forma geral para se referir tanto às figuras bidimensionais como às tridimensionais. Em todos os lugares, nós nos deparamos com diferentes formas geométricas – arredondadas, retilíneas, simétricas, assimétricas, cônicas, esféricas dentre muitas outras. A percepção das formas que estão ao nosso redor é desenvolvida pelas crianças, mesmo antes de entrarem na escola. Nos anos iniciais do Ensino fundamental, os alunos começam a desenvolver as habilidades de reconhecimento de formas utilizando alguns atributos das figuras planas (um dos elementos que diferencia o quadrado do triângulo é o atributo número de lados) e tridimensionais (conseguem distinguir a forma esférica de outras formas). Nas séries finais do Ensino fundamental, são trabalhadas as principais propriedades das figuras geométricas. No Ensino Médio os alunos identificam várias propriedades das figuras geométricas, entre as quais destacamos o teorema de Pitágoras, propriedades dos quadriláteros dentre outras.
Os alunos cuja proficiência se encontra na faixa cinza, de 0 a 125 pontos, ainda não desenvolveram as habilidades relacionadas a esta competência.
No intervalo de 125 a 200 pontos, representado pelo amarelo-claro, os alunos começam a desenvolver a habilidade de associar objetos do cotidiano às suas formas geométricas.
No intervalo de 200 a 250 pontos, representado pelo amarelo-escuro, os alunos começam a desenvolver a habilidade de identificar quadriláteros e triângulos, utilizando como atributo o número de lados. Assim, dado um conjunto de figuras, os alunos, pela contagem do número de lados, identificam aqueles que são triângulos e os que são quadriláteros. Em relação aos sólidos, os alunos identificam suas propriedades comuns e suas diferenças, utilizando um dos atributos, nesse caso o número de faces.
Alunos cuja proficiência se encontra entre 250 e 300 pontos identificam algumas características de quadriláteros relativas a lados e ângulos e, também, reconhecem alguns polígonos, como pentágonos, hexágonos entre outros, considerando, para isso, o número de lados. Em relação aos quadriláteros, conseguem identificar as posições dos lados, valendo-se do paralelismo. Com relação aos sólidos 2012 geométricos, esses alunos identificam os objetos com forma esférica a partir de um conjunto de objetos do cotidiano e reconhecem algumas características dos corpos redondos. A partir das características dos sólidos geométricos, os alunos discriminam entre poliedros e corpos redondos, bem como identificam a planificação do cubo e do bloco retangular. O laranja-claro indica o desenvolvimento dessas habilidades.
No intervalo-laranja escuro, 300 a 375 pontos na Escala , os alunos reconhecem um quadrado fora de sua posição usual. É muito comum, ao rotacionarmos um quadrado 90 graus, os alunos não identificarem a figura como sendo um quadrado. Nesse caso, os alunos consideram essa figura como sendo um losango. Em relação às figuras tridimensionais, os alunos identificam alguns elementos dessas figuras como, por exemplo, faces, vértices e bases, além de contarem o número de faces, vértices e arestas dos poliedros. Ainda, em relação às figuras planas, os alunos reconhecem alguns elementos da circunferência, como raio, diâmetro e cordas. Relacionam os sólidos geométricos às suas planificações e também identificam duas planificações possíveis do cubo.
Alunos que apresentam proficiência a partir de 375 pontos já desenvolveram as habilidades referentes aos níveis anteriores e, ainda, identificam a quantidade e as formas dos polígonos que formam um prisma, bem como identificam sólidos geométricos a partir de sua planificação (prismas e corpos redondos) e vice-versa. A cor vermelha indica o desenvolvimento das habilidades vinculadas a esta competência.
Existem vários tipos de transformações no plano. Dentre elas, podemos citar as isometrias que têm como características a preservação de distâncias entre pontos do plano, como translações, rotações e reflexões e as transformações por semelhança que preservam a forma, mas não preservam, necessariamente, o tamanho. As habilidades relacionadas a esta competência dizem respeito às transformações por semelhança e, devido à sua complexidade, começam a ser desenvolvidas em níveis mais altos da Escala de Proficiência.
Os alunos cuja proficiência se encontra na faixa cinza, de 0 a 325 pontos, ainda não desenvolveram as habilidades relacionadas a esta competência.
Os alunos que se encontram entre 325 e 350 pontos na Escala, marcado pelo amarelo-claro, começam a desenvolver as habilidades desta competência. Esses alunos são os que resolvem problemas envolvendo escalas e constante de proporcionalidade.
O amarelo-escuro, 350 a 375 pontos, indica que os alunos com uma proficiência que se encontra neste intervalo já conseguem realizar tarefas mais complexas, pois reconhecem a semelhança de triângulos a partir da medida de seus ângulos, bem como comparam áreas de figuras planas semelhantes desenhadas em uma malha quadriculada, obtendo o fator multiplicativo.
No intervalo representado pela cor vermelha, os alunos reconhecem que a área de um retângulo quadruplica quando as medidas de seus lados são dobradas.
A resolução de problemas é uma capacidade cognitiva que deve ser desenvolvida na escola. O ensino da Matemática pode auxiliar nesse desenvolvimento considerando que a resolução de problemas não é o ponto final do processo de aprendizagem e sim o ponto de partida da atividade matemática, propiciando ao aluno desenvolver estratégias, levantar hipóteses, testar resultados, utilizar conceitos já aprendidos em outras competências. No campo do Espaço e forma, espera-se que os alunos consigam aplicar relações e propriedades das figuras geométricas – planas e não planas – em situações-problema.
Os alunos cuja proficiência se se encontra na faixa cinza, de 0 a 300 pontos, ainda não desenvolveram as habilidades relacionadas a esta competência.
O amarelo-claro, de 300 a 350 pontos na Escala, indica que os alunos trabalham com ângulo reto e reconhecem esse ângulo como sendo correspondente a um quarto de giro. Em relação às figuras geométricas, conseguem aplicar o teorema da soma dos ângulos internos de um triângulo para resolver problemas e diferenciar os tipos de ângulos: agudo, obtuso e reto. Em relação ao estudo do círculo e circunferência, esses alunos estabelecem relações entre as medidas do raio, diâmetro e corda.
No intervalo representado pelo amarelo-escuro, de 350 a 375 pontos, os alunos resolvem problemas geométricos mais complexos, utilizando o teorema de Pitágoras e a lei angular de tales, além de resolver problemas envolvendo o cálculo do número de diagonais de um polígono e utilizar relações para o cálculo da soma dos ângulos internos e externos de um triângulo. Em relação ao estudo do círculo e circunferência, esses alunos calculam os ângulos centrais em uma circunferência dividida em partes iguais.
Alunos cuja proficiência se encontra entre 375 e 400 pontos, marcado pelo laranja-claro, resolvem problemas mais complexos, envolvendo o teorema de Pitágoras e relações métricas no triângulo retângulo.
No intervalo representado pela cor vermelha, os alunos resolvem problemas utilizando conceitos básicos da trigonometria, como a Relação fundamental da trigonometria e as razões trigonométricas em um triângulo retângulo. Na geometria analítica identificam a equação de uma reta e a sua equação reduzida a partir de dois pontos dados. Reconhecem os coeficientes linear e angular de uma reta, dado o seu gráfico. Identificam a equação de uma circunferência a partir de seus elementos e vice-versa. Na geometria Espacial, utilizam a relação de Euler para determinar o número de faces, vértices e arestas.
Um dos objetivos do estudo de grandezas e medidas é propiciar ao aluno o desenvolvimento da competência: utilizar sistemas de medidas. Para o desenvolvimento desta competência, nos anos iniciais do Ensino fundamental, podemos solicitar aos alunos que marquem o tempo por meio de calendário. Destacam-se, também, atividades envolvendo culinária, o que possibilita um rico trabalho, utilizando diferentes unidades de medida, como o tempo de cozimento: horas e minutos e a quantidade dos ingredientes: litro, quilograma, colher, xícara, pitada e outros. Os alunos utilizam também outros sistemas de medidas convencionais para resolver problemas.
Os alunos cuja proficiência se encontra na faixa cinza, de 0 a 125 pontos, ainda não desenvolveram as habilidades relacionadas a esta competência.
No intervalo de 125 a 175 pontos, representado pelo amarelo-claro, os alunos estão no início do desenvolvimento desta competência. Eles conseguem ler horas inteiras em relógio analógico.
No intervalo representado pelo amarelo-escuro, de 175 a 225 pontos, os alunos conseguem ler horas e minutos em relógio digital e de ponteiro em situações simples, resolver problemas relacionando diferentes unidades de uma mesma medida para cálculo de intervalos (dias e semanas, minutos e horas), bem como, estabelecer relações entre diferentes medidas de tempo (horas, dias, semanas), efetuando cálculos. Em relação à grandeza comprimento, os alunos resolvem problemas relacionando metro e centímetro. Quanto à grandeza Sistema Monetário, identificam quantas moedas de um mesmo valor equivalem a uma quantia inteira dada em reais e vice-versa.
Alunos que apresentam uma proficiência entre 225 e 300 pontos, marcado pelo laranja-claro, desenvolvem tarefas mais complexas em relação à grandeza tempo. Esses alunos relacionam diferentes unidades de medidas como, por exemplo, o mês, o bimestre, o ano, bem como estabelecem relações entre segundos e minutos, minutos e horas, dias e anos. Em se tratando da grandeza Sistema Monetário, resolvem problemas de trocas de unidades monetárias, que envolvem um número maior de cédulas e em situações menos familiares. Resolvem problemas realizando cálculo de conversão de medidas das grandezas comprimento (quilômetro/metro), massa (quilograma/grama) e capacidade (litro/mililitro).
No intervalo de 300 a 350 pontos, marcado pelo laranja-escuro, os alunos resolvem problemas realizando conversão e soma de medidas de comprimento (quilômetro/metro) e massa (quilograma/grama). Neste caso, os problemas envolvendo conversão de medidas assumem uma complexidade maior do que aqueles que estão na faixa anterior.
Percebe-se que, até o momento, as habilidades requeridas dos alunos para resolver problemas utilizando conversão de medidas envolvem as seguintes grandezas: comprimento, massa, capacidade. Há problemas que trabalham com outras grandezas como, por exemplo, as grandezas volume e capacidade estabelecendo a relação entre suas medidas – metros cúbicos (m³) e litro (L). Acima de 350 pontos na Escala de Proficiência, as habilidades relacionadas a esta competência apresentam uma maior complexidade. Neste nível, os alunos resolvem problemas envolvendo a conversão de m³ em litros, de cm² em m² e m³ em L. A cor vermelha indica o desenvolvimento das habilidades relacionadas a esta competência.
Outro objetivo do ensino de grandezas e medidas é propiciar ao aluno o desenvolvimento da competência: medir grandezas. Esta competência é desenvolvida nos anos iniciais do Ensino fundamental quando, por exemplo, solicitamos aos alunos para medirem o comprimento e largura da sala de aula usando algum objeto como unidade. Esta é uma habilidade que deve ser amplamente discutida com os alunos, pois, em razão da diferença dos objetos escolhidos como unidade de medida, os resultados encontrados serão diferentes. E perguntas como: “Qual é medida correta?” É respondida da seguinte forma: “todos os resultados são igualmente corretos, pois eles expressam medidas realizadas com unidades diferentes.” Além dessa habilidade, ainda nas séries iniciais do Ensino fundamental, também é trabalhada a habilidade de medir a área e o perímetro de figuras planas, a partir das malhas quadriculadas ou não. Nos anos finais do Ensino fundamental, os alunos resolvem problemas envolvendo o cálculo de perímetro e área de figuras planas e problemas envolvendo noções de volume (paralelepípedo). No Ensino Médio os alunos resolvem problemas envolvendo o cálculo do volume de diferentes sólidos geométricos (prisma, pirâmide, cilindro, cone, esfera) e problemas envolvendo a área total de um sólido (prisma, pirâmide, cilindro, cone, esfera).
Os alunos cuja proficiência se encontra na faixa cinza, de 0 a 150 pontos, ainda não desenvolveram as habilidades relacionadas a esta competência.
No intervalo de 150 a 225 pontos na Escala, representada pela cor amarelo-claro, os alunos conseguem resolver problemas de cálculo de área relacionando o número de metros quadrados com a quantidade de quadradinhos contida em um retângulo desenhado em malha quadriculada.
Alunos cuja proficiência se encontra entre 225 e 275 pontos, representado pelo amarelo-escuro, realizam tarefas mais complexas, comparando e calculando áreas de figuras poligonais em malhas quadriculadas. Em relação ao perímetro, demonstram a habilidade de identificar os lados e, conhecendo suas medidas, calcular a extensão do contorno de uma figura poligonal dada em uma malha quadriculada, bem como calcular o perímetro de figura sem o apoio de malhas quadriculadas. Ainda, reconhecem que a medida do perímetro de um polígono, em uma malha quadriculada, dobra ou se reduz à metade quando os lados dobram ou são reduzidos à metade.
No intervalo representado pelo laranja-claro, de 275 a 325 pontos na Escala, os alunos calculam a área com base em informações sobre os ângulos da figura e o volume de sólidos a partir da medida de suas arestas.
Aluno cuja proficiência se encontra no intervalo de 325 a 400 pontos, laranja-escuro, resolvem problemas envolvendo o cálculo aproximado da área de figuras planas desenhadas em malhas quadriculadas cuja borda é formada por segmentos de retas e arcos de circunferências. Também calculam a área do trapézio retângulo e o volume do paralelepípedo. Em relação ao perímetro, neste intervalo, realizam o cálculo do perímetro de polígonos sem o apoio de malhas quadriculadas e do volume de paralelepípedo retângulo de base quadrada. Reconhecem que a área de um retângulo quadruplica quando as medidas de seus lados são dobradas.
A partir de 400 pontos na Escala, os alunos resolvem problemas envolvendo a decomposição de uma figura plana em triângulos, retângulos e trapézios retângulos e calculam a área desses polígonos. O vermelho indica o desenvolvimento das habilidades relativas a esta competência.
O estudo de grandezas e medidas tem, também, como objetivo propiciar ao aluno o desenvolvimento da competência: estimar e comparar grandezas. Muitas atividades cotidianas envolvem esta competência, como comparar tamanhos dos objetos, pesos, volumes, temperaturas diferentes e outras. Nas séries iniciais do Ensino Fundamental, esta competência é trabalhada, por exemplo, quando solicitamos aos alunos que comparem dois objetos estimando as suas medidas e anunciando qual dos dois é maior. Atividades como essas propiciam a compreensão do processo de medição, pois medir significa comparar grandezas de mesma natureza e obter uma medida expressa por um número.
Os alunos cuja proficiência se encontra na faixa cinza, de 0 a 175 pontos, ainda não desenvolveram as habilidades relacionadas a esta competência.
Alunos cuja proficiência se encontra entre 175 e 225 pontos, representado pelo amarelo-claro, estão no início do desenvolvimento desta competência. Eles leem informações em calendários, localizando o dia de um determinado mês e identificam as notas do Sistema Monetário brasileiro, necessárias para pagar uma compra informada.
No intervalo de 225 a 275 pontos, os alunos conseguem estimar medida de comprimento usando unidades convencionais e não convencionais. O amarelo-escuro indica o início do desenvolvimento dessa habilidade.
O laranja-claro, 275 a 350 pontos, indica que os alunos com uma proficiência que se encontra neste intervalo já conseguem realizar tarefas mais complexas relativas a esta competência, como, por exemplo, resolver problemas estimando outras medidas de grandezas utilizando unidades convencionais como o litro.
A partir de 350 pontos os alunos comparam os perímetros de figuras desenhadas em malhas quadriculadas. O vermelho indica o desenvolvimento das habilidades referentes a esta competência.
As crianças, nos anos iniciais do Ensino Fundamental, têm contato com os números e já podem perceber a importância deles na vida cotidiana. Já conhecem a escrita de alguns números e já realizam contagens. Nessa fase da escolaridade, os alunos começam a conhecer os diferentes conjuntos numéricos e a perceberem a sua utilização em contextos do cotidiano. Entre os conjuntos numéricos estudados estão os naturais e os racionais em sua forma fracionária e decimal. Não podemos nos esquecer de que o domínio de números está sempre relacionado a outros domínios como o das grandezas e medidas. Na etapa final do Ensino Fundamental, os alunos resolvem problemas mais complexos envolvendo diferentes conjuntos numéricos, como os naturais, inteiros e racionais. No Ensino Médio, os alunos já devem ter desenvolvido esta competência.
Os alunos cuja proficiência se encontra na faixa cinza, de 0 a 100 pontos, ainda não desenvolveram as habilidades relacionadas a esta competência.
Alunos que se encontram no intervalo de 100 a 200 pontos, representado pelo amarelo-claro, desenvolveram habilidades básicas relacionadas ao Sistema de Numeração decimal. Por exemplo: dado um número natural, esses alunos reconhecem o valor posicional dos algarismos, a sua escrita por extenso e a sua composição e decomposição em unidades e dezenas. Eles, também, representam e identificam números naturais na reta numérica. Além disso, reconhecem a representação decimal de medida de comprimento expressas em centímetros e localizam esses números na reta numérica em uma articulação com os conteúdos de Grandezas e medidas, dentre outros.
O amarelo-escuro, 200 a 250 pontos, indica que os alunos com proficiência neste intervalo já conseguem elaborar tarefas mais complexas. Eles trabalham com a forma polinomial de um número, realizando composições e decomposições de números de até três algarismos, identificando seus valores relativos. Já em relação aos números racionais, reconhecem a representação de uma fração por meio de representação gráfica.
No laranja-claro, intervalo de 250 a 300 pontos, os alunos percebem que, ao mudar um algarismo de lugar, o número se altera. Identificam e localizam números inteiros em uma reta numérica ou em uma escala não unitária. Transformam uma fração em número decimal e vice-versa. Localizam, na reta numérica, números racionais na forma decimal e comparam esses números quando têm diferentes partes inteiras. Neste intervalo aparecem, também, habilidades relacionadas a porcentagem. Os alunos estabelecem a correspondência 50% de um todo com a metade.
No intervalo de 300 a 375 pontos, marcado pelo laranja-escuro, os alunos desenvolveram habilidades mais complexas relacionadas a frações equivalentes. Eles já resolvem problemas identificando mais de uma forma de representar numericamente uma mesma fração. Por exemplo, percebem, com apoio de uma figura, que a fração meio é equivalente a dois quartos. Além disso, resolvem problemas identificando um número natural (não informado), relacionando-o a uma demarcação na reta. Esses alunos, também, transformam frações em porcentagens e vice-versa, identificam a fração como razão e a fração como parte-todo, bem como, os décimos, centésimos e milésimos de um número decimal.
Acima de 375 pontos na Escala, os alunos, além de já terem desenvolvido as habilidades relativas aos níveis anteriores, conseguem localizar na reta numérica números representados na forma fracionária, comparar números fracionários com denominadores diferentes e reconhecer a leitura de um número decimal até a ordem dos décimos. O vermelho indica o desenvolvimento das habilidades associadas a esta competência.
Esta competência refere-se às habilidades de cálculo e à capacidade de resolver problemas que envolvem as quatro operações básicas da aritmética. Envolve, também, o conhecimento dos algoritmos utilizados para o cálculo dessas operações. Além do conhecimento dos algoritmos, esta competência requer a aplicação dos mesmos na resolução de problemas englobando os diferentes conjuntos numéricos, seja em situações específicas da Matemática, seja em contextos do cotidiano.
Os alunos cuja proficiência se encontra na faixa cinza, de 0 a 100 pontos, ainda não desenvolveram as habilidades relacionadas a esta competência.
No intervalo representado pelo amarelo-claro, de 100 a 200 pontos, em relação à adição e subtração, os alunos realizam operações envolvendo números de até três algarismos com reserva. Já em relação à multiplicação, realizam operações com reserva, tendo como multiplicador um número com um algarismo. Os alunos resolvem problemas utilizando adição, subtração e multiplicação envolvendo, inclusive, o Sistema Monetário.
Alunos, cuja proficiência se encontra no intervalo de 200 a 250 pontos, amarelo-escuro, em relação às operações, realizam subtrações mais complexas com quatro algarismos e com reserva. Realizam também multiplicações com reserva, com multiplicador de até dois algarismos. Realizam divisões e resolvem problemas envolvendo divisões exatas com divisor de duas ordens. Além disso, resolvem problemas envolvendo duas ou mais operações.
O laranja-claro, intervalo de 250 a 300 pontos, indica um novo grau de complexidade desta competência. Os alunos com proficiência neste nível resolvem problemas envolvendo as diferentes ideias relacionadas à multiplicação, em situações contextualizadas. Também efetuam adição e subtração com números inteiros, bem como realizam cálculo de expressões numéricas envolvendo o uso de parênteses e colchetes com adição e subtração, além de calcular porcentagens e resolver problemas do cotidiano envolvendo porcentagens em situações simples.
Alunos, cuja proficiência se localiza no intervalo de 300 a 350 pontos, já calculam expressões numéricas envolvendo números inteiros e decimais positivos e negativos, inclusive potenciação. Eles conseguem, ainda, resolver problemas envolvendo soma de números inteiros e porcentagens, além de calcular raiz 33 quadrada e identificar o intervalo em que está inserida a raiz quadrada não exata de um número, bem como efetuar arredondamento de decimais. O laranja-escuro indica a complexidade dessas habilidades.
No intervalo representado pela cor vermelha, acima de 350 pontos, os alunos calculam o resultado de expressões envolvendo, além das quatro operações, números decimais (positivos e negativos, potências e raízes exatas). Efetuam cálculos de divisão com números racionais (forma fracionária e decimal simultaneamente). Neste nível, os alunos desenvolveram as habilidades relativas a esta competência.
O estudo da álgebra possibilita ao aluno desenvolver várias capacidades, dentre elas a capacidade de abstrair, generalizar, demonstrar e sintetizar procedimentos de resolução de problemas. As habilidades referentes à álgebra são desenvolvidas no Ensino Fundamental e vão desde situações-problema em que se pretende descobrir o valor da incógnita em uma equação utilizando uma balança de dois pratos, até a resolução de problemas envolvendo equações do segundo grau. Uma das habilidades básicas desta competência diz respeito ao cálculo do valor numérico de uma expressão algébrica, em que é utilizado o conceito de variável. No Ensino Médio esta competência envolve a utilização de procedimentos algébricos para resolver problemas envolvendo o campo dos diferentes tipos de funções: linear, afim, quadrática e exponencial.
Os alunos cuja proficiência se encontra na faixa cinza, de 0 a 275 pontos, ainda não desenvolveram as habilidades relacionadas a esta competência.
No intervalo representado pelo amarelo-claro, 275 a 300 pontos, os alunos calculam o valor numérico de uma expressão algébrica.
No intervalo de 300 a 350 pontos, indicado pelo amarelo-escuro, os alunos já identificam a equação de primeiro grau e sistemas de primeiro grau, adequados à resolução de problemas. Esses alunos também determinam o cálculo numérico de uma expressão algébrica em sua forma fatorada e resolvem problemas envolvendo: grandezas diretamente proporcionais, variações entre mais de duas grandezas, juros simples, porcentagem e lucro.
O laranja-claro, de 350 a 400 pontos na Escala, indica uma maior complexidade nas habilidades associadas a esta competência. Neste nível de proficiência, os alunos resolvem problemas que recaem em equação do segundo grau e sistemas de equações do primeiro grau e problemas mais complexos envolvendo juros simples.
Alunos cuja proficiência se localiza no intervalo de 400 a 425 pontos, laranja-escuro, resolvem problemas que envolvem grandezas inversamente proporcionais e sistemas de duas equações. No campo das sequências numéricas, identificam uma regularidade em uma sequência numérica e determinam o número que ocupa uma determinada posição na sequência.
Acima de 425 pontos na Escala, indicado pela cor vermelha, os alunos resolvem problemas relacionando a representação algébrica com a geométrica de um sistema de equações do primeiro grau.
Um dos objetivos do ensino do conteúdo tratamento da informação é propiciar ao aluno o desenvolvimento da competência: ler, utilizar e interpretar informações apresentadas em tabelas e gráficos. Esta competência é desenvolvida nas séries iniciais do Ensino Fundamental por meio de atividades relacionadas aos interesses das crianças. Por exemplo, ao registrar os resultados de um jogo ou ao anotar resultados de respostas a uma consulta que foi apresentada, elas poderão, utilizando sua própria forma de se expressar, construir representações dos fatos e, pela ação mediadora do professor, essas representações podem ser interpretadas e discutidas. Esses debates propiciam novas oportunidades para a aquisição de outros conhecimentos e para o desenvolvimento de habilidades e de atitudes. Nas séries finais do Ensino Fundamental, temas mais relevantes podem ser explorados e utilizados a partir de revistas e jornais. O professor pode sugerir a realização de pesquisas com os alunos sobre diversos temas e efetuar os registros dos resultados em tabelas e gráficos para análise e discussão. No Ensino Médio, os alunos são solicitados a utilizarem procedimentos estatísticos mais complexos como, por exemplo, cálculo de média aritmética.
Os alunos cuja proficiência se encontra na faixa cinza, de 0 a 100 pontos, ainda não desenvolveram as habilidades relacionadas a esta competência.
No intervalo representado pelo amarelo-claro, de 125 e 150 pontos, os alunos leem informações em tabelas de coluna única e extraem informações em gráficos de coluna por meio de contagem.
No intervalo representado pelo amarelo-escuro, de 150 a 200 pontos, os alunos leem informações em tabelas de dupla entrada e interpretam dados num gráfico de colunas por meio da leitura de valores no eixo vertical.
De 200 a 250 pontos, intervalo indicado pelo laranja-claro, os alunos localizam informações e identificam gráficos de colunas que correspondem a uma tabela com números positivos e negativos. Esses alunos também conseguem ler gráficos de setores e localizar dados em tabelas de múltiplas entradas, além de resolver problemas simples envolvendo as operações, identificando dados apresentados em gráficos ou tabelas, inclusive com duas entradas.
Alunos com proficiência entre 250 e 325 pontos, laranja-escuro, identificam o gráfico de colunas ou barras correspondente ao gráfico de setores e reconhecem o gráfico de colunas ou barras correspondente a dados apresentados de forma textual; associam informações contidas em um gráfico de colunas e barras a uma tabela que o representa, utilizando estimativas.
A cor vermelha, acima de 325 pontos, indica que os alunos leem, utilizam e interpretam informações a partir de gráficos de linha do plano cartesiano. Além de analisarem os gráficos de colunas representando diversas variáveis, comparando seu crescimento. Neste nível de proficiência, as habilidades relativas a esta competência estão desenvolvidas.
Um dos objetivos do ensino do tratamento de informação em Matemática é propiciar ao aluno o desenvolvimento da competência: utilizar procedimentos de combinatória e probabilidade. Esta competência deve ser desenvolvida desde as séries iniciais do Ensino Fundamental por meio da resolução de problemas de contagem simples e a avaliação das possibilidades de ocorrência ou não de um evento. Algumas habilidades vinculadas a esta competência no Ensino Fundamental são exploradas juntamente com o domínio Números, operações e álgebra. Quando tratamos essa habilidade dentro do tratamento de informação, ela se torna mais forte no sentido do professor perceber a real necessidade de trabalhar com ela. O professor deve resolver problemas simples de possibilidade de ocorrência, ou não, de um evento ou fenômeno, do tipo “Qual é a chance?” apesar desse conhecimento intuitivo ser muito comum na vida cotidiana, convém trabalhar com os alunos a diferença entre um acontecimento natural, que tem um caráter determinístico, e um acontecimento aleatório, cujo caráter é probabilístico. Também é possível trabalhar em situações que permitam avaliar se um acontecimento é mais ou menos provável. Não se trata de desenvolver com os alunos as técnicas de cálculo de probabilidade. Mas sim, de explorar a ideia de possibilidade de ocorrência ou não de um evento ou fenômeno. Intuitivamente, compreenderão que alguns acontecimentos são possíveis, isto é, “têm chance” de ocorrer (eventos com probabilidades não nulas). Outros acontecimentos são certos, “garantidos” (eventos com probabilidade de 100%) e há aqueles que nunca poderão ocorrer (eventos com probabilidades nulas). As habilidades associadas a esta competência são mais complexas, por isso começam a ser desenvolvidas em níveis mais altos da Escala de Proficiência.
Os alunos cuja proficiência se encontra na faixa cinza, de 0 a 375 pontos, ainda não desenvolveram as habilidades relacionadas a esta competência.
No intervalo representado pelo amarelo-claro, de 375 a 400 pontos, os alunos começam a desenvolver esta competência, calculando a probabilidade de um evento acontecer no lançamento de um dado, bem como a probabilidade de ocorrência de dois eventos sucessivos como, por exemplo, ao se lançar um dado e uma moeda.
O amarelo-escuro, 400 a 425 pontos, indica uma complexidade maior nesta competência. Neste intervalo, os alunos conseguem resolver problemas de contagem utilizando o princípio multiplicativo sem repetição de elementos e calculam a probabilidade de ocorrência de um evento simples.
© Secretaria da Educação do Paraná
Av. Água Verde, 2140 - Vila Isabel
80240-900 - Curitiba - PR
41 3340-1500 - Localização
Superintendência de Desenvolvimento Educacional
Rua dos Funcionários, 1323 - Cabral
80035-050 - Curitiba - PR
41 3250-8100 - Localização
Diretoria de Tecnologia Educacional
Rua Salvador de Ferrante, 1651 - Carmo
81670-390 - Curitiba - PR
41 3377-2226 - Localização