Descrição:
RESENDE, Marilene Ribeiro
Este trabalho se insere dentro da problemática que questiona qual a álgebra deve ser ensinada nos diferentes níveis da escolaridade, em especial na formação de professores de matemática da escola básica. Neste contexto, este estudo foi orientado pela questão: Qual Teoria dos Números é ou poderia ser concebida como um saber a ensinar na licenciatura em matemática, visando à prática docente na escola básica? O objetivo é compreender a Teoria dos Números, enquanto saber a ensinar, e buscar elementos para re-significá-la na licenciatura em matemática. Os referenciais teóricos foram buscados em Chevallard, Chervel, Tardif, Macedo e Lopes, para discutir o saber científico e o saber a ensinar; em Shulman, para discutir os saberes dos professores; e em Campbell & Zazkis, para tratar a Teoria dos Números no ensino. Numa abordagem qualitativa de pesquisa, foram analisadas as propostas curriculares das disciplinas que tratam de Teoria dos Números nos cursos de licenciatura em matemática de doze universidades brasileiras; foram analisados dez livros didáticos, escolhidos dentre os mais citados nos programas das disciplinas pesquisadas; e foram realizadas sete entrevistas semiestruturadas com professores e pesquisadores em Teoria dos Números ou em Educação Matemática. Para o tratamento dos dados, utilizou-se a análise de conteúdo, conforme descrita por Lüdke & André, Laville & Dionne e Bardin. Foi possível concluir que a Teoria dos Números tratada na maioria das universidades pesquisadas não tem a preocupação com a formação do professor da escola básica, pois a abordagem dos conteúdos é axiomática, numa linguagem predominantemente simbólico-formal, com ênfase nas demonstrações, o que permite enquadrar o seu ensino na tendência formalista clássica. Por outro lado, puderam ser identificados elementos e possibilidades para resignificá-la, considerando que: tópicos de Teoria dos Números estão presentes na educação básica, sendo que os números naturais e os inteiros ocupam grande parte dos currículos de matemática nesse nível e o seu ensino tem questões próprias que não podem ser desconsideradas na formação do professor; a Teoria dos Números é um espaço propício para o desenvolvimento de ideias matemáticas relevantes relativas aos números naturais e algumas também estendidas aos inteiros, presentes na matemática escolar, como a recorrência, a indução matemática, a divisibilidade; a Teoria dos Números é um campo propício para uma abordagem mais ampla da prova, porque oferece ricas oportunidades para a exploração dos diferentes tipos de provas, permitindo ao licenciando perceber que a prova tem diferentes funções e que, no ensino, não deve ser compreendida da mesma forma que na pesquisa em matemática; a Teoria os Números é um campo propício para a investigação matemática, porque permite a exploração de padrões e relações numéricas, o uso da recursão e da indução matemática, oportunizando o desenvolvimento das habilidades de conjecturar, generalizar, testar e validar as conjecturas. Essas potencialidades sustentam a concepção de uma disciplina, que está sendo denominada Teoria Elementar dos Números, que tem como fonte o saber científico, mas também os saberes escolares e as demandas que o seu ensino apresenta ao professor. Constituem tópicos essenciais a serem abordados: os números inteiros em seus aspectos históricos, epistemológicos e procedimentais; a divisibilidade, números primos e equações diofantinas lineares. Seus objetivos e abordagens devem considerar que o conhecimento do conteúdo e o conhecimento pedagógico do conteúdo, a teoria e a prática devem estar presentes na sua constituição, como elementos indissociáveis e imprescindíveis.
Palavras-chave: Educação Matemática. Formação de Professores. Educação algébrica. Ensino de Teoria dos Números. Números inteiros.
|